555 research outputs found

    Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments

    Full text link
    As direct dark matter experiments continue to increase in size, they will become sensitive to neutrinos from astrophysical sources. For experiments that do not have directional sensitivity, coherent neutrino scattering (CNS) from several sources represents an important background to understand, as it can almost perfectly mimic an authentic WIMP signal. Here we explore in detail the effect of neutrino backgrounds on the discovery potential of WIMPs over the entire mass range of 500 MeV to 10 TeV. We show that, given the theoretical and measured uncertainties on the neutrino backgrounds, direct detection experiments lose sensitivity to light (~10 GeV) and heavy (~100 GeV) WIMPs with a spin-independent cross section below 10^{-45} cm^2 and 10^{-49} cm^2, respectively.Comment: 15 pages, 12 figures, 7Be fluxes revised, conclusions unchange

    Solar neutrino physics with low-threshold dark matter detectors

    Get PDF
    Dark matter detectors will soon be sensitive to Solar neutrinos via two distinct channels: coherent neutrino-nucleus scattering and neutrino electron elastic scattering. We establish an analysis method for extracting Solar model properties and neutrino properties from these measurements, including the possible effects of sterile neutrinos which have been hinted at by some reactor experiments and cosmological measurements. Even including sterile neutrinos, through the coherent scattering channel a 1 ton-year exposure with a low-threshold Germanium detector could improve on the current measurement of the normalization of the 8^8B Solar neutrino flux down to 3% or less. Combining with the elastic scattering data will provide constraints on both the high and low energy survival probability, and will improve on the uncertainty on the active-to-sterile mixing angle by a factor of two. This sensitivity to active-to-sterile transitions is competitive and complementary to forthcoming dedicated short baseline sterile neutrino searches with nuclear decays.Comment: 12 pages, 4 figures, 3 table

    Complementarity of dark matter detectors in light of the neutrino background

    Get PDF
    Direct detection dark matter experiments looking for WIMP-nucleus elastic scattering will soon be sensitive to an irreducible background from neutrinos which will drastically affect their discovery potential. Here we explore how the neutrino background will affect future ton-scale experiments considering both spin-dependent and spin-independent interactions. We show that combining data from experiments using different targets can improve the dark matter discovery potential due to target complementarity. We find that in the context of spin-dependent interactions, combining results from several targets can greatly enhance the subtraction of the neutrino background for WIMP masses below 10 GeV/c2^2 and therefore probe dark matter models to lower cross-sections. In the context of target complementarity, we also explore how one can tune the relative exposures of different target materials to optimize the WIMP discovery potential.Comment: 13 pages, 12 figures, 3 table

    Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems. A simulation study

    Get PDF
    Background: Locoregional hyperthermia is applied to deep-seated tumours in the pelvic region. Two very different heating techniques are often applied: capacitive and radiative heating. In this paper, numerical simulations are applied to compare the performance of both techniques in heating of deep-seated tumours. Methods: Phantom simulations were performed for small (30 × 20 × 50 cm 3 ) and large (45 × 30 × 50 cm 3 ), homogeneous fatless and inhomogeneous fat-muscle, tissue-equivalent phantoms with a central or eccentric target region. Radiative heating was simulated with the 70 MHz AMC-4 system and capacitive heating was simulated at 13.56 MHz. Simulations were performed for small fatless, small (i.e. fat layer typically 3 cm) patients with cervix, prostate, bladder and rectum cancer. Temperature distributions were simulated using constant hyperthermic-level perfusion values with tissue constraints of 44 °C and compared for both heating techniques. Results: For the small homogeneous phantom, similar target heating was predicted with radiative and capacitive heating. For the large homogeneous phantom, most effective target heating was predicted with capacitive heating. For inhomogeneous phantoms, hot spots in the fat layer limit adequate capacitive heating, and simulated target temperatures with radiative heating were 2–4 °C higher. Patient simulations predicted therapeutic target temperatures with capacitive heating for fatless patients, but radiative heating was more robust for all tumour sites and patient sizes, yielding target temperatures 1–3 °C higher than those predicted for capacitive heating. Conclusion: Generally, radiative locoregional heating yields more favourable simulated temperature distributions for deep-seated pelvic tumours, compared with capacitive heating. Therapeutic temperatures are predicted for capacitive heating in patients with (almost) no fat

    No ν\nu floors: Effective field theory treatment of the neutrino background in direct dark matter detection experiments

    Get PDF
    Distinguishing a dark matter interaction from an astrophysical neutrino-induced interaction will be major challenge for future direct dark matter searches. In this paper, we consider this issue within non-relativistic Effective Field Theory (EFT), which provides a well-motivated theoretical framework for determining nuclear responses to dark matter scattering events. We analyze the nuclear energy recoil spectra from the different dark matter-nucleon EFT operators, and compare to the nuclear recoil energy spectra that is predicted to be induced by astrophysical neutrino sources. We determine that for 11 of the 14 possible operators, the dark matter-induced recoil spectra can be cleanly distinguished from the corresponding neutrino-induced recoil spectra with moderate size detector technologies that are now being pursued, e.g., these operators would require 0.5 tonne years to be distinguished from the neutrino background for low mass dark matter. Our results imply that in most models detectors with good energy resolution will be able to distinguish a dark matter signal from a neutrino signal, without the need for much larger detectors that must rely on additional information from timing or direction

    Minimal Universal Extra Dimensions

    Full text link
    Highly degenerate spectra associated with universal extra dimensions (UED) provide an interesting phenomenology not only from the point of view of cosmology and astrophysics, but also for colliders. We study these exotic signals for the simplest case, called minimal UED, where it is natural to find slow charged particles, displaced vertices, tracks with non-vanishing impact parameters, track kinks, and even vanishing charged tracks.Comment: 6 pages, 3 figures. Contributed to XXIII International Symposium on Lepton and Photon Interactions at High Energy, Aug 13-18, 2007, Daegu, Kore
    • …
    corecore